- Интерактивные методы обучения: «Карусель», «Дерево решений»
- Как создать идеальное дерево решений: для начинающих аналитиков данных и не только
- Что такое дерево решений
- Преимущества и недостатки методики дерева решений
- Как создать дерево решений
- Правила классификации
- Почему сложно построить идеальное дерево решений
- Как использовать жадный алгоритм для построения дерева решений
Интерактивные методы обучения: «Карусель», «Дерево решений»
Дата | 23.05.2016 |
Размер | 17,86 Kb. |
- Навигация по данной странице:
- Метод Критерий Пассивный Активный
- Описание упражнения.
- Разновидности метода «Карусель». «Идейная карусель».
- «Мозговой штурм методом карусели»
Пассивный | Активный | Интерактивный | ||
1. Мотивация | Внешняя (оценки, влияние родителей) | Внешняя и внутренняя | Внутренняя (интерес самого учащегося) | |
2. Роль учащегося | Пассивная, активность очень низкая | Высокая активность, отсутствие взаимодействия между членами ученического коллектива | Высокая активность, постоянное сотрудничество, развитие коммуникативности | |
3. Роль личности учителя | Учитель – источник знаний, особенности которого не раскрываются | Учитель-собеседник, личные качества + профессиональное мастерство учителя | Учитель – равноправный партнер, организатор, консультант познавательной деятельности | |
4. Степень усвоения материала | Невысокий 5. Уровни познания | Знание, понимание, воспроизведение | Широкий спектр, дифференциация обучения | Знания, анализ, синтез, творческое применение информации |
6. Контроль | Учитель контролирует объем информации, обратная связь, непостоянные результаты, результаты предсказуемы | Сотрудничество учителя с учеником, постоянная обратная связь, предусмотренные результаты | Контроль опосредованный, непрерывная рефлексия, понимание способов достижения цели, результаты работы менее предусмотрены |
Метод «Карусель», как и многие интерактивные технологии, позаимствована из психологических тренингов. Детям такой вид работы обычно очень нравится. Образуется два кольца: внутреннее и внешнее. Внутреннее кольцо — это сидящие неподвижно ученики, обращенные лицом к внешнему кругу, а внешнее — это ученики, перемещающиеся по кругу через каждые 30 секунд. Таким образом, они успевают проговорить за несколько минут несколько тем и постараться убедить в своей правоте собеседника. Ребята увлеченно беседуют, занятие проходит динамично и результативно.
Участники делятся на две равные подгруппы (если количество участников нечетное, то к одной из подгрупп присоединяется ведущий). Те, кто попал в первую подгруппу, садятся во внутренний круг лицом вовне; те, кто во вторую, — занимают места во внешнем круге, лицом к ним. Таким образом все оказываются разбиты на пары. Потом ведущий дает тему для обсуждения и распределяет роли: например, те, кто сидит во внутреннем круге, принимают пассивную роль (слушают, задают уточняющие вопросы), а те, кто во внешнем, — активную (рассказывают, отвечают на поставленные вопросы). Через 1,5–2 мин по команде ведущего внешний круг сдвигается относительно внутреннего на одного человека вправо или влево (т. е. меняется состав пар) и меняется распределение ролей: те, кто слушал, теперь рассказывают, а кто рассказывал — слушают. Потом внешний круг опять сдвигается относительно внутреннего, меняются активная и пассивная роли и задается новая тема для обсуждения. Таким способом обсуждаются 2–3 темы, например:
Разновидности метода «Карусель».
Реализация приема «идейная карусель» предполагает следующий алгоритм работы:
1. Каждому члену микрогруппы (по 4-5 человек) раздается чистый лист бумаги и всем задается один и тот же вопрос. Без словесного обмена мнениями все участники записывают на своих листках бумаги спонтанные формулировки ответов на него.
2. Листки с записями в режиме дефицита времени передаются по кругу по часовой стрелке соседям по микрогруппе. При получении листка с записями каждый участник должен сделать новую запись, не повторяя имеющиеся. Работа заканчивается, когда каждому вернется его листок. На этом этапе записи не анализируются и не оцениваются. 3. В микрогруппах происходит обсуждение сформулированных участниками ответов, предложений и выделение в итоговый список наиболее важных, актуальных из них.
4. Обмен результатами наработок микрогрупп. Все микрогруппы предлагают по очереди свои формулировки из итогового списка. Если формулировка не встречает возражений других групп, она включается в окончательный общий список
«Мозговой штурм методом карусели»
В этом методе класс разбивается на малые группы и каждой группе выдается большой лист бумаги с проблемными вопросами вверху листа.
В течение короткого периода времени каждая группа набрасывает по своей теме максимальное число идей. Затем группы обмениваются листами и продолжают работать над следующими темами, и так продолжается, пока каждая группа не внесет свой вклад в разработку всех тем. В конце мозгового штурма все листы предъявляются классу, и ученики могут посмотреть на результаты общей работы. В продолжение обсуждения каждая группа может получить обратно лист, с которого они начинали работу, с просьбой осмыслить все предложения, выдвинутые по данной теме.
Близким по форме к разновидностям «Карусели» является метод «Дерево решений».
Метод «Дерево решений».
При использовании метода «Дерево решений» класс делится на 3 или 4 группы с одинаковым количеством учеников. Каждая группа обсуждает вопрос и делает записи на своем «дереве» (большой лист бумаги), потом группы меняются местами и дописывают на деревьях соседей свои идеи, не критикуя и не исправляя уже имеющиеся на листе. Можно смену групп провести по кругу, можно остановиться на определенном количестве «советников». Группа-хозяин перерабатывает дополнения, предлагает свое конечное решение по данному вопросу, проводим дискуссию, иногда перерастающую в прения сторон (особенно при обсуждении каких-то спорных или противоречивых вопросов). Дерево решений можно использовать, обсуждая плюсы (одна группа) и минусы (вторая группа) какого-то вопроса.
Как создать идеальное дерево решений: для начинающих аналитиков данных и не только
Рассказываем, как правильно использовать дерево решений для машинного обучения, визуализации данных и наглядной демонстрации процесса принятия решений. Пригодится не только аналитикам данных, но и тем, кто хочет найти методику, помогающую более взвешенно принимать решения в жизни и бизнесе.
Статья подготовлена на основе перевода: How to Create a Perfect Decision Tree by Upasana Priyadarshiny.
Основные задачи, которые дерево решений решает в машинном обучении, анализе данных и статистике:
- Классификация — когда нужно отнести объект к конкретной категории, учитывая его признаки.
- Регрессия — использование данных для прогнозирования количественного признака с учетом влияния других признаков.
Деревья решений также могут помочь визуализировать процесс принятия решения и сделать правильный выбор в ситуациях, когда результаты одного решения влияют на результаты следующих решений. Попробуем объяснить, как это работает на простых примерах из жизни.
Что такое дерево решений
Визуально дерево решений можно представить как карту возможных результатов из ряда взаимосвязанных выборов. Это помогает сопоставить возможные действия, основываясь на их стоимости (затратах), вероятности и выгоде.
Как понятно из названия, для этого используют модель принятия решений в виде дерева. Такие древовидные схемы могут быть полезны и в процессе обсуждения чего-либо, и для составления алгоритма, который математически определяет наилучший выбор.
Обычно дерево решений начинается с одного узла, который разветвляется на возможные результаты. Каждый из них продолжает схему и создает дополнительные узлы, которые продолжают развиваться по тому же признаку. Это придает модели древовидную форму.
В дереве решений могут быть три разных типа узлов:
- Decision nodes — узлы решения, они показывают решение, которое нужно принять.
- Chance nodes — вероятностные узлы, демонстрируют вероятность определенных результатов.
- End nodes — замыкающие узлы, показывают конечный результат пути решения.
Преимущества и недостатки методики дерева решений
- Деревья решений создаются по понятным правилам, они просты в применении и интерпретации.
- Можно обрабатывать как непрерывные, так и качественные (дискретные) переменные.
- Можно работать с пропусками в данных, деревья решений позволяют заполнить пустое поле наиболее вероятным значением.
- Помогают определить, какие поля больше важны для прогнозирования или классификации.
- Есть вероятность ошибок в задачах классификации с большим количеством классов и относительно небольшим числом примеров для обучения.
- Нестабильность процесса: изменение в одном узле может привести к построению совсем другого дерева, что связано с иерархичностью его структуры.
- Процесс «выращивания» дерева решений может быть довольно затратным с точки зрения вычислений, ведь в каждом узле каждый атрибут должен раскладываться до тех пор, пока не будет найден наилучший вариант решения или разветвления. В некоторых алгоритмах используются комбинации полей, в таком случае приходится искать оптимальную комбинацию по «весу» коэффициентов. Алгоритм отсечения (или «обрезки») также дорогостоящий, так как необходимо сформировать и сравнить большое количество потенциальных ветвей.
Как создать дерево решений
Для примера предлагаем сценарий, в котором группа астрономов изучает планету — нужно выяснить, сможет ли она стать новой Землей.
Существует N решающих факторов, которые нужно тщательно изучить, чтобы принять разумное решение. Этими факторами может быть наличие воды на планете, температурный диапазон, подвержена ли поверхность постоянным штормам, сможет ли выжить флора и фауна в этом климате и еще сотни других параметров.
Задачу будем исследовать через дерево решений.
- Пригодная для обитания температура находится в диапазоне от 0 до 100 градусов Цельсия?
- Подвержена ли поверхность планеты штормам?
Таким образом, у нас получилось завершенное дерево решений.
Правила классификации
Сначала определимся с терминами и их значениями.
Правила классификации — это случаи, в которых учитываются все сценарии, и каждому присваивается переменная класса.
Переменная класса — это конечный результат, к которому приводит наше решение. Переменная класса присваивается каждому конечному, или листовому, узлу.
Вот правила классификации из примера дерева решений про исследование новой планеты:
- Если температура не находится в диапазоне от -0,15 °C до 99,85 °C, то выживание затруднительно.
- Если температура находится в диапазоне от -0,15 °C до 99,85 °C, но нет воды, то выживание затруднительно.
- Если температура находится в диапазоне от -0,15 °C до 99,85 °C, есть вода, но нет флоры и фауны, то выживание затруднительно.
- Если температура находится в диапазоне от -0,15 °C до 99,85 °C, есть вода, есть флора и фауна, поверхность не подвержена штормам, то выживание возможно.
- Если температура находится в диапазоне от -0,15 °C до 99,85 °C, есть вода, есть флора и фауна, но поверхность подвержена штормам, то выживание затруднительно.
Почему сложно построить идеальное дерево решений
В структуре дерева решений выделяют следующие компоненты:
- Root Node, или корневой узел — тот, с которого начинается дерево, в нашем примере в качестве корня рассматривается фактор «температура».
- Internal Node, или внутренний узел — узлы с одним входящим и двумя или более исходящими соединениями.
- Leaf Node, или листовой узел — это заключительный элемент без исходящих соединений.
Когда создается дерево решений, мы начинаем от корневого узла, проверяем условия тестирования и присваиваем элемент управления одному из исходящих соединений. Затем снова тестируем условия и назначаем следующий узел. Чтобы считать дерево законченным, нужно все условия привести к листовому узлу (Leaf Node). Листовой узел будет содержать все метки класса, которые влияют на «за» и «против» в принятии решения.
Обратите внимание — мы начали с признака «температура», посчитали его корнем. Если выбрать другой признак, то и дерево получится другим. В этом принцип метода — нужно выбрать оптимальный корень и с помощью него выстраивать дерево, решить, какое же дерево нужно для выполнения задачи.
Есть разные способы найти максимально подходящее дерево решений для конкретной ситуации. Ниже расскажем об одном из них.
Как использовать жадный алгоритм для построения дерева решений
Смысл подхода — принцип так называемой жадной максимизации прироста информации. Он основан на концепции эвристического решения проблем — делать оптимальный локальный выбор в каждом узле, так достигая решения, которое с высокой вероятностью будет самым оптимальным.
Упрощенно алгоритм можно объяснить так:
- На каждом узле выбирайте оптимальный способ проверки.
- После разбейте узел на все возможные результаты (внутренние узлы).
- Повторите шаги, пока все условия не приведут к конечным узлам.
Главный вопрос: «Как выбрать начальные условия для проверки?» . Ответ заключается в значениях энтропии и прироста информации (информационном усилении). Рассказываем, что это и как они влияют на создание нашего дерева:
- Энтропия — в дереве решений это означает однородность. Если данные полностью однородны, она равна 0; в противном случае, если данные разделены (50-50%), энтропия равна 1. Проще этот термин можно объяснить так — это то, как много информации, значимой для принятия решения, мы не знаем.
- Прирост информации — величина обратная энтропии, чем выше прирост информации, тем меньше энтропия, меньше неучтенных данных и лучше решение.
Итого — мы выбираем атрибут, который имеет наибольший показатель прироста информации, чтобы пойти на следующий этап разделения. Это помогает выбрать лучшее решение на любом узле.
Смотрите на примере. У нас есть большое количество таких данных:
Здесь может быть n деревьев решений, которые формируются из набора атрибутов.