Алгебра упражнения с модулями

Задачи с модулем
методическая разработка по алгебре (11 класс)

Решение задач с модулем вызывает у учащихся затруднения. Чтобы им помочь научиться решать уравнения и неравенства с модулем я предлагаю данный материал. Статья посвящена приёмам решения уравнений и неравенств, содержащих переменную под знаком модуля.

Скачать:

Вложение Размер
modul_chisla_i_uravneniya_s_modulem.docx 131.18 КБ

Предварительный просмотр:

Задачи с модулем

Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет. никакого знака, поэтому модуль положительного числа равен ему самому. Например, Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному
(без знака!). Например,

Обратите внимание: модуль числа всегда неотрицателен:

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,

В некоторых случаях модуль раскрывается однозначно. Например, так как выражение под знаком модуля неотрицательно при любых x и y . Или: так так как выражение под модулем неположительно при любых z .

Геометрическая интерпретация модуля

Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например, То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.

Рассмотрим простейшее уравнение . Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения есть два решения: x = 3 и x = −3.

Вообще, если имеются два числа a и b, то равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение длины отрезка AB, то есть расстояния от точки A до точки B.)

Ясно, что (расстояние от точки a до точки b равно расстоянию от точки b до точки a ).

Решим уравнение . Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.

Перейдём к неравенствам. Решим неравенство .

Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.

Ответ: (-11; -3).

Другой пример. Решим неравенство |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно семи. Отметим эти точки на числовой прямой.
Ответ:

График функции

Этот график надо знать обязательно. Для имеем y = x . Для имеем y = −x . В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.

Корень из квадрата

Нередко в задачах ЕГЭ требуется вычислить , где – некоторое число или выражение. Не забывайте, что

Действительно, по определению арифметического квадратного корня — это такое неотрицательное число, квадрат которого равен . Оно равно при и при , т. е. как раз .

Примеры заданий ЕГЭ

1 . Найдите значение выражения при .
Заметим, что при . Следовательно, значение нашего выражения равно: .

2. Найдите значение выражения при .

В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить, вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда, занять это может часа полтора драгоценного экзаменационного времени.

Поэтому разберём несколько приёмов, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем .

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

или

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. .

1.

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

2 .

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Второй случай: x

Число . больше, чем , и потому не удовлетворяет условию x :

Значит, . является корнем исходного уравнения.

Ответ:

3.

Снимать модуль по определению? Страшно даже подумать об этом, ведь дискриминант — не полный квадрат. Давайте лучше воспользуемся следующим соображением: уравнение вида |A| = B равносильно совокупности двух систем:

То же самое, но немного по-другому:

Иными словами, мы решаем два уравнения, A = B и A = −B, а потом отбираем корни, удовлетворяющие условию B ≥ 0.

Приступаем. Сначала решаем первое уравнение:



Затем решаем второе уравнение:

Теперь в каждом случае проверяем знак правой части:

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Решим уравнение:

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Решим уравнение:

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Решим уравнение:

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Если вы научились решать уравнения с модулями – значит, сможете справиться и с неравенствами.

1. 2|x − 4| + |3x + 5| ≥ 16.

Полученное неравенство выполняется при всех рассматриваемых x ≥ 4. Иными словами, все числа из промежутка [4; +∞) являются решениями нашего неравенства.

2) Имеем в данном случае:

Учитывая, в каком промежутке мы сейчас находимся, получаем в качестве решений исходного неравенства множество [3; 4].

3) . Имеем:

Так как − , то все значения x из полученного промежутка служат решениями исходного неравенства.

Остаётся объединить множества решений, полученные в трёх рассмотренных случаях.

Ответ:

По теме: методические разработки, презентации и конспекты

Понятие абсолютной величины (модуля) является одной из важнейших характеристик числа как в области действительных, так и в области комплексных чисел. Это понятие широко применяется не только в различн.

Рабочая прогамма элективного курса по математике “Решение задач с модулем и параметрами” для 9 класса составлена в соответствии с федеральным компонентом Государственного образовательного стандарта ос.

Основная цель курса: Познакомить учащихся с методами решения уравнений и неравенств с параметром и модулем.

Рабочая программа рассчитана на 11 класс при подготовке к ЕГЭ, но может быть использована для 9-11 классов с разной степенью подготовки.

Программа элективного курса “Задачи с модулем и параметром” для 9 класса.

Модуль. Решение задач, содержащих модуль. Курс выстроен с учётом возрастных особенностей восприятия учебного материала учащимися.

Программа рассчитана на учащихся, проявивших интерес к изучению математики. Ввиду того, что тема «Модуль» изучается в 6 классе, а дальше ей не уделяется должного вн.

Источник

Читайте также:  Физические упражнения при заболеваниях эндокринной системы
Понравилась статья? Поделиться с друзьями:
Adblock
detector